

OCR Computer Science A Level

1.2.2 Applications Generation
Advanced Notes

www.pmt.education

Specification:

1.2.2 a)

● Nature of applications

1.2.2 b)
● Utilities

1.2.2 c)

● Open source vs closed source

1.2.2 d)

● Translators
○ Interpreters
○ Compilers
○ Assemblers

1.2.2 e)

● Stages of compilation
○ Lexical analysis
○ Syntax analysis
○ Code generation
○ Optimisation

1.2.2 f)

● Linkers, loaders and use of libraries

www.pmt.education

Nature of applications

Software can either be categorised as applications software or systems software.

Applications software
Applications software is designed to be used by the end-user to perform one specific task .
Application software requires systems software in order to run.
Examples: desktop publishing, word processing, spreadsheets , web browsers.

Systems software
Systems software is low-level software that is responsible for running the computer system
smoothly, interacting with hardware and generally providing a platform for applications
software to run. The user does not directly interact with systems software but it ensures
high performance for the user.
Examples: library programs, utility programs, operating system, device drivers.

Utilities

Utilities are a key piece of system software integral to ensuring the consistent, high
performance of the operating system. Each utility program has a specific function linked to
the maintenance of the operating system.

Examples include:

- Compression
Operating systems provide utilities that
enable files to compressed and
decompressed. This is used when
compressing large files to be
transmitted across the Internet and is
commonly used to compress scanned
files.

- Disk defragmentation
As the hard disk becomes full, read/write times slow down. This is because
files become fragmented as they are stored in different parts of memory. The
disk defragmenter utility rearranges the contents of the hard drive so they
can be accessed faster, thus improving performance.

- Antivirus
Antivirus is responsible for detecting potential threats to the computer,
alerting the user and removing these threats.

www.pmt.education

- Automatic updating
This utility ensures the operating system is kept up to date, with any updates
being automatically installed when the computer is restarted. Updates tackle
bugs or security flaws so this ensures the system is less vulnerable to
malware and hacking threats.

- Backup
The backup utility automatically creates routine copies of specific files
selected by the user. How often files are backed up is also specified by the
user. This means that in the event of a power failure, malicious attack or
other accident, files can be recovered.

Open source vs closed source

Source code is written by a programmer and refers to object code before it has been
compiled. When software is described to be ‘open source’ or ‘closed source’, this refers to
whether or not the source code is accessible to the public.

 Open source Closed Source

Definition Open source code can be used
by anyone without a license and
is distributed with the source
code.

Closed source code requires the
user to hold an appropriate
license to use it. Users cannot
access the source code as the
company owns the copyright
license .

Advantages Can be modified and improved
by anyone

Thorough, regular and
well-tested updates

Technical support from online
community

Company owning software
provides expert support and user
manuals.

Can be modified and sold on High levels of security as
developed professionally.

Disadvantages Support available online may be
insufficient or incorrect. No user
manuals.

License restricts how many
people can use the software at
once

Lower security as may not be
developed in a controlled
environment

Users cannot modify and
improve software themselves

www.pmt.education

Whether a user chooses to use open source or closed source software ultimately depends
on the suitability of the software to the task they will be using it for. The user must also
consider:

- Costs - implementation, maintenance, training of staff, license
- Functionality - features available, ease of use

Translators

A translator is a program that converts high-level source
code into low-level object code, which is then ready to be
executed by a computer. There are three types of translator
that convert different types of code and work in different
ways.

Compiler
Compilers translate high-level code into machine code all at
once, after carrying out a number of checks and reporting
back any errors. This initial compilation process is longer than
using an interpreter or an assembler. If changes need to be
made, the whole program must be recompiled.
Once code has been compiled to produce machine code, it
can only be executed on certain devices - compiled code is
specific to a particular processor type and operating system.
Code can be run without a translator being present.

Interpreter
Interpreters translate and execute code line-by-line. They
stop and produce an error if a line contains an error. They
may initially appear faster than compilers as code is instantly executed, but are slower
than running compiled code as code must be translated each time it is executed with an
interpreter.
This feature makes interpreters useful for testing sections of code and pinpointing errors,
as time is not wasted compiling the entire program before it has been fully debugged.
Interpreted code requires an interpreter in order to run on different devices. However, code
can be executed on a range of platforms as long as the right interpreter is available, thus
making interpreted code more portable.

www.pmt.education

Assembler

Assembly Code
Assembly code is considered to be a low-level language
as it is the ‘next level up’ from machine code . Assembly
code is platform specific, as the instructions used are
dependent on the instruction set of the processor .

Assemblers translate assembly code into machine code.
Each line of assembly code is equivalent to almost one line of machine code so code is
translated on almost a one-to-one basis.

Stages of compilation

When a compiler is used, high-level code goes through four stages before it is turned into
object code that is ready to be executed.

Lexical Analysis
In the first stage of compilation, whitespace and comments are removed from the code.
The code below...

while flag = False:
print “not found”;

#terminates when item is found

Is translated into...

while flag =False:
print“not found”;

The remaining code is analysed for keywords and names of variables and constants.
These are replaced with tokens and information about the token associated with each
keyword or identifier is stored in a symbol table.

Syntax Analysis
In this stage, tokens are analysed against the grammar
and rules of the programming language. Any tokens that
break the rules of the programming language are flagged
up as syntax errors and added to a list of errors.

www.pmt.education

Examples of syntax errors: undeclared variable type, incomplete set of brackets.
An abstract syntax tree is produced , which is a representation of the source code in the
form of a tree. Further detail about identifiers is also added to the symbol table.
Semantic analysis is also carried out at the syntax analysis stage, where logic mistakes
within the program are detected.
Examples of semantic errors: multiple declaration , undeclared identifiers

Code Generation
The abstract syntax tree produced in the syntax analysis stage is used to produce
machine code.

Optimisation
This stage of compilation searches through the code for areas it could be made more
efficient. The aim of optimisation is to make the code faster to execute although this stage
can significantly add to the overall time taken for compilation.
Insignificant, redundant parts of code are detected and removed. Repeated sections of
code may be grouped and replaced with a more efficient piece of code which produces the
same result. There is a danger, however, that excessive optimisation may alter the way in
which the program behaves.

Linkers, Loaders and Use of Libraries

Most programs use external pieces of code within them, including subroutines and libraries
from outside sources.

Linkers
This is a piece of software that is responsible for linking external modules and libraries
included within the code. There are two types of linker:

Static
Modules and libraries are added directly into the main file. This increases the size of the
file. Any updates to modules and libraries externally will not affect the program. This
means a specific version of a library can be used.

Dynamic
Addresses of modules and libraries are included in the file where they are referenced.
When the program is run, the loader retrieves the program at the specified address so it
can be executed. The advantage here is that files remain small and external updates feed
through to the main file ; there is no need to rewrite the code.

www.pmt.education

Loaders
Loaders are programs provided by the operating system. When a file is executed, the
loader retrieves the library or subroutine from the given memory location.

Use of Libraries
Libraries are pre-compiled programs which can be incorporated within other programs
using either static or dynamic linking. They are ready-to-use and error free, so save time
developing and testing modules. Another advantage of libraries is that they can be reused
within multiple programs.

Libraries are often used to provide a specialised range of functions which would otherwise
require a lot of time and effort to develop, so save programmers from having to ‘reinvent
the wheel’ and instead make use of others’ expertise. Popular libraries provide
mathematical and graphical functions.

www.pmt.education

